Computing the Integer Points of a Polyhedron, II: Complexity Estimates
نویسندگان
چکیده
Let K be a polyhedron in R, given by a system of m linear inequalities, with rational number coefficients bounded over in absolute value by L. In this series of two papers, we propose an algorithm for computing an irredundant representation of the integer points of K, in terms of “simpler” polyhedra, each of them having at least one integer point. Using the terminology of W. Pugh: for any such polyhedron P , no integer point of its grey shadow extends to an integer point of P . We show that, under mild assumptions, our algorithm runs in exponential time w.r.t. d and in polynomial w.r.t m and L. We report on a software experimentation. In this series of two papers, the first one presents our algorithm and the second one discusses our complexity estimates.
منابع مشابه
Computing the Integer Points of a Polyhedron, I: Algorithm
Let K be a polyhedron in R, given by a system of m linear inequalities, with rational number coefficients bounded over in absolute value by L. In this series of two papers, we propose an algorithm for computing an irredundant representation of the integer points of K, in terms of “simpler” polyhedra, each of them having at least one integer point. Using the terminology of W. Pugh: for any such ...
متن کاملComputing the Integer Points of a Polyhedron
Let K be a polyhedron in R, given by a system of m linear inequalities, with rational number coefficients bounded over in absolute value by L. We propose an algorithm for computing an irredundant representation of the integer points of K, in terms of “simpler” polyhedra, each of them having at least one integer point. Using the terminology of W. Pugh: for any such polyhedron P , no integer poin...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملNote on the complexity of the mixed-integer hull of a polyhedron
We study the complexity of computing the mixed-integer hull conv(P ∩ Z ×R) of a polyhedron P . Given an inequality description, with one integer variable, the mixed-integer hull can have exponentially many vertices and facets in d. For n, d fixed, we give an algorithm to find the mixed integer hull in polynomial time. Given P = conv(V ) and n fixed, we compute a vertex description of the mixed-...
متن کاملMaximum Entropy Gaussian Approximation for the Number of Integer Points and Volumes of Polytopes
We describe a maximum entropy approach for computing volumes and counting integer points in polyhedra. To estimate the number of points from a particular set X ⊂ Rn in a polyhedron P ⊂ Rn we construct a probability distribution on the set X by solving a certain entropy maximization problem such that a) the probability mass function is constant on the set P ∩X and b) the expectation of the distr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017